http://www.arcelect.com/rs232.htm Electronic data communications between elements will generally fall into two broad categories: single-ended and differential. RS232 (single-ended) was introduced in 1962, and despite rumors for its early demise, has remained widely used through the industry. Independent channels are established for two-way (full-duplex) communications. The RS232 signals are represented by voltage levels with respect to a system common (power / logic ground). The "idle" state (MARK) has the signal level negative with respect to common, and the "active" state (SPACE) has the signal level positive with respect to common. RS232 has numerous handshaking lines (primarily used with modems), and also specifies a communications protocol. The RS-232 interface presupposes a common ground between the DTE and DCE. This is a reasonable assumption when a short cable connects the DTE to the DCE, but with longer lines and connections between devices that may be on different electrical busses with different grounds, this may not be true. --> RS232 data is bi-polar.... +3 TO +12 volts indicates an "ON or 0-state (SPACE) condition" while A -3 to -12 volts indicates an "OFF" 1-state (MARK) condition.... Modern computer equipment ignores the negative level and accepts a zero voltage level as the "OFF" state. In fact, the "ON" state may be achieved with lesser positive potential. This means circuits powered by 5 VDC are capable of driving RS232 circuits directly, however, the overall range that the RS232 signal may be transmitted/received may be dramatically reduced. The output signal level usually swings between +12V and -12V. The "dead area" between +3v and -3v is designed to absorb line noise. In the various RS-232-like definitions this dead area may vary. For instance, the definition for V.10 has a dead area from +0.3v to -0.3v. Many receivers designed for RS-232 are sensitive to differentials of 1v or less. This can cause problems when using pin powered widgets - line drivers, converters, modems etc. These type of units need enough voltage & current to power them self's up. Typical URART (the RS-232 I/O chip) allows up to 50ma per output pin - so if the device needs 70ma to run we would need to use at least 2 pins for power. Some devices are very efficient and only require one pin (some times the Transmit or DTR pin) to be high - in the "SPACE" state while idle. An RS-232 port can supply only limited power to another device. The number of output lines, the type of interface driver IC, and the state of the output lines are important considerations. The types of driver ICs used in serial ports can be divided into three general categories: Drivers which require plus (+) and minus (-) voltage power supplies such as the 1488 series of interface integrated circuits. (Most desktop and tower PCs use this type of driver.) Low power drivers which require one +5 volt power supply. This type of driver has an internal charge pump for voltage conversion. (Many industrial microprocessor controls use this type of driver.) Low voltage (3.3 v) and low power drivers which meet the EIA-562 Standard. (Used on notebooks and laptops.) -------------------------------------------------------------------------------- Data is transmitted and received on pins 2 and 3 respectively. Data Set Ready (DSR) is an indication from the Data Set (i.e., the modem or DSU/CSU) that it is on. Similarly, DTR indicates to the Data Set that the DTE is on. Data Carrier Detect (DCD) indicates that a good carrier is being received from the remote modem. Pins 4 RTS (Request To Send - from the transmitting computer) and 5 CTS (Clear To Send - from the Data set) are used to control. In most Asynchronous situations, RTS and CTS are constantly on throughout the communication session. However where the DTE is connected to a multipoint line, RTS is used to turn carrier on the modem on and off. On a multipoint line, it's imperative that only one station is transmitting at a time (because they share the return phone pair). When a station wants to transmit, it raises RTS. The modem turns on carrier, typically waits a few milliseconds for carrier to stabilize, and then raises CTS. The DTE transmits when it sees CTS up. When the station has finished its transmission, it drops RTS and the modem drops CTS and carrier together. Clock signals (pins 15, 17, & 24) are only used for synchronous communications. The modem or DSU extracts the clock from the data stream and provides a steady clock signal to the DTE. Note that the transmit and receive clock signals do not have to be the same, or even at the same baud rate. Note: Transmit and receive leads (2 or 3) can be reversed depending on the use of the equipment - DCE Data Communications Equipment or a DTE Data Terminal Equipment. -------------------------------------------------------------------------------- Glossary of Abbreviations etc. CTS Clear To Send [DCE --> DTE] DCD Data Carrier Detected (Tone from a modem) [DCE --> DTE] DCE Data Communications Equipment eg. modem DSR Data Set Ready [DCE --> DTE] DSRS Data Signal Rate Selector [DCE --> DTE] (Not commonly used) DTE Data Terminal Equipment eg. computer, printer DTR Data Terminal Ready [DTE --> DCE] FG Frame Ground (screen or chassis) NC No Connection RCk Receiver (external) Clock input RI Ring Indicator (ringing tone detected) RTS Request To Send [DTE --> DCE] RxD Received Data [DCE --> DTE] SG Signal Ground SCTS Secondary Clear To Send [DCE --> DTE] SDCD Secondary Data Carrier Detected (Tone from a modem) [DCE --> DTE] SRTS Secondary Request To Send [DTE --> DCE] SRxD Secondary Received Data [DCE --> DTE] STxD Secondary Transmitted Data [DTE --> DCE] TxD Transmitted Data [DTE --> DCE] -------------------------------------------------------------------------------- Is Your Interface a DTE or a DCE? One of the stickiest areas of confusion in datacom is over the terms "transmit" and "receive" as they pertain to DTE (data terminal equipment) and DCE (data communication equipment). In synchronous communication, this confusion is particularly acute, because more signals are involved. So why is it that you sometimes send data on TD, and other times you send data on RD? Is this just a cruel form of mental torture? Not really. The secret lies in adopting the proper perspective. In data-com, the proper perspective is always from the point of view of the DTE. When you sit at a PC, terminal or workstation (DTE) and transmit data to somewhere far away, you naturally do so on the TD (transmit data) line. When your modem or CSU/DSU (DCE) receives this incoming data, it receives the data on the TD line as well. Why? Because the only perspective that counts in data-com is the perspective of the DTE. It does not matter that the DCE thinks it is receiving data; the line is still called "TD". Conversely, when the modem or CSU/DSU receives data from the outside world and sends it to the DTE, it sends it on the RD line. Why? Because from the perspective of the DTE, the data is being received! So when wondering, "Is this line TD or RD? Is it TC or RC?" Ask yourself, "What would the DTE say?" Find out by following these steps: The point of reference for all signals is the terminal (or PC). 1 ) Measure the DC voltages between (DB25) pins 2 & 7 and between pins 3 & 7. Be sure the black lead is connected to pin 7 (Signal Ground) and the red lead to whichever pin you are measuring. 2) If the voltage on pin 2 is more negative than -3 Volts, then it is a DTE, otherwise it should be near zero volts. 3) If the voltage on pin 3 is more negative than -3 Volts, then it is a DCE. 4) If both pins 2 & 3 have a voltage of at least 3 volts, then either you are measuring incorrectly, or your device is not a standard EIA-232 device. Call technical support. 5) In general, a DTE provides a voltage on TD, RTS, & DTR, whereas a DCE provides voltage on RD, CTS, DSR, & CD.